Bright White Upconversion Emission from Tm/Yb/Er-Doped LuGaO Nanocrystals
Venkataramanan Mahalingam, Francesca Mangiarini, Fiorenzo Vetrone, Vemula Venkatramu, Marco Bettinelli, Adolfo Speghini, and John A. Capobianco

Downloaded from http://pubs.acs.org on January 22, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML
Bright White Upconversion Emission from Tm$^{3+}$/Yb$^{3+}$/Er$^{3+}$-Doped Lu$_3$Ga$_5$O$_{12}$ Nanocrystals

Venkataramanan Mahalingam, Francesco Mangiarini, Fiorenzo Vetrone, Vemula Venkatramu, Marco Bettinelli, Adolfo Speghini, and John A. Capobianco

Department of Chemistry and Biochemistry, Concordia University, Canada; Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Université du Québec, Canada; Department of Physics, Yogi Vemana University, Kadapa, India; Dipartimento Scientifico e Tecnologico, Università di Verona, and INSTM, UdR Verona, Italy, and DiSTeMeV, Università di Verona and INSTM, UdR Verona, Verona, Italy

Received: August 27, 2008; Revised Manuscript Received: October 08, 2008

We report the synthesis of Tm$^{3+}$/Yb$^{3+}$/Er$^{3+}$-doped Lu$_3$Ga$_5$O$_{12}$ nanocrystals prepared by a simple sol−gel method exhibiting bright white light following excitation with lower energy near-infrared light ($\lambda_{\text{exc}} = 980$ nm) via an upconversion process. The combination of upconverted blue (from Tm$^{3+}$), green, and red (from Er$^{3+}$) emissions resulted in the white luminescence, which is intense and visible to the naked eye at a laser power less than 30 mW (3.4 W/cm2). The calculated Commission internationale de l’éclairage (CIE) color coordinates, which is the standard reference for defining colors, fall well within the white region and shift only slightly with the incident laser powers indicating that the material might be promising for the development of devices such as white light lasers and LEDs.

1. Introduction

Research on nanoscale materials is rapidly increasing due to their potential applications in the development of state-of-the-art technologies. Among the various nanoscale materials, trivalent lanthanide (Ln$^{3+}$)-doped luminescent materials are particularly attractive both from a fundamental and a practical viewpoint mainly due to their unique optical properties arising from the intra 4f transitions. These inner 4f electrons are well-shielded by the outer 5s and 5p orbitals giving rise to strong and sharp emissions (due to weak interactions with the host lattice). These characteristics make them an interesting alternative to quantum dots in the development of optoelectronic devices such as field emission and plasma displays, electro-luminescent devices, as well as biological applications. The lanthanide ions, more importantly, can undergo a process known as upconversion where an NIR photon excites the ground-state to an intermediate state, which possesses a long lifetime. Consequently, a second incoming NIR photon excites the ion from that intermediate state to the upper emitting state. Using different combinations of Ln$^{3+}$ ions at different concentrations one may tailor the visible emission wavelengths obtained following excitation with the low energy NIR radiation to obtain almost any desired visible emission. The generation of white light using this process could be particularly interesting.

Sources of white light materials find applications in flat panel display backlights, in addition to their importance in the development of efficient white-LEDs, which are quite promising replacements for existing incandescent and fluorescent bulbs. The advantage of developing materials that can be excited with commercially available NIR diode lasers, which produce white light via the process of upconversion and possessing a degree of brightness comparable to those excited conventionally using UV light, can eliminate photodegradation caused by the high energy photons. Although, there are many papers published in the literature in which white light has been observed, white light via upconversion from Ln$^{3+}$-doped materials is limited. Bright white light through UC has been observed from thin films made via sol−gel matrices incorporated with Ln$^{3+}$-doped nanoparticles. The individual Ln$^{3+}$ ions responsible for blue, green, and red emission (Tm$^{3+}$, Er$^{3+}$, and Eu$^{3+}$) were doped in LaF$_3$ nanoparticles and subsequently incorporated in SiO$_2$ and ZrO$_2$ sol−gel matrices. Ln$^{3+}$-doped sesquioxides (Y$_2$O$_3$) and molybdates (Gd$_5$(MoO$_4$)$_3$) have also been reported as white light sources, where the former was synthesized using a precipitation method and the latter by a combustion method. Despite these reports there is a continuous demand for new and efficient white light materials for advanced technological applications. Among other classes of photonic materials, garnets are superior hosts for the lanthanide ions. In particular, aluminum and gallium garnets doped with luminescent rare-earth ions are interesting materials for many optical devices, such as high-power lasers or optical waveguides. We have previously shown that nanocrystalline Er$^{3+}$-doped gadolinium gallium garnet (Gd$_5$Ga$_5$O$_{12}$:Er$^{3+}$) shows much higher luminescent intensities than binary oxide nanocrystals such as Y$_2$O$_3$:Er$^{3+}$ and thus our motivation to study garnet hosts for the production of white light. Furthermore, it has been shown that the luminescent intensities of many Lu-based compounds

10.1021/jp8076479 CCC: $40.75 © 2008 American Chemical Society
are significantly higher than corresponding yttrium (Y) or gadolinium (Gd) based compounds.18,19

In this communication, we report the observation of strong white light obtained from Tm3+/Yb3+/Er3+-doped Lu\textsubscript{3}GaO\textsubscript{12} nanocrystals prepared by a simple sol–gel method. The blue component of the upconverted white light is obtained from the Tm3+ ion, while the green and the red components from the Er3+ ions. Moreover, the Yb3+ ions are used as sensitizers in the upconversion process and do not contribute to the overall visible luminescence. The Yb3+ ion has only one excited electronic energy state (although this state will split into three Stark levels when doped in solid matrices) at approximately 980 nm (2\textsuperscript{F\textsubscript{5/2}}) with a very high absorption cross-section and undergoes efficient energy transfer to other suitable dopant ions making it an ideal sensitizer for the UC process.

2. Experimental Details

Materials. Tm(NO\textsubscript{3})\textsubscript{3}, Er(NO\textsubscript{3})\textsubscript{3}, Yb(NO\textsubscript{3})\textsubscript{3}, Lu(NO\textsubscript{3})\textsubscript{3}, Gd(NO\textsubscript{3})\textsubscript{3}, citric acid, and polyethylene glycol were all ultrahigh purity reagents purchased from Aldrich and used without further purification. Aqueous NH\textsubscript{4}OH (28\%–30\%) from Anachemia was used as received. Milli-Q water with a resistance of 18 M\textOmega was used in all experiments.

Synthesis of Tm3+/Yb3+/Er3+-Doped Lu\textsubscript{3}GaO\textsubscript{12} Nanocrystals. The nanocrystals of composition Lu\textsubscript{2.64}Er\textsubscript{0.03}Tm\textsubscript{0.03}Yb\textsubscript{0.3}Ga\textsubscript{5}O\textsubscript{12} were prepared via the Pechini sol–gel method. Stoichiometric amounts of Tm(NO\textsubscript{3})\textsubscript{3}, Er(NO\textsubscript{3})\textsubscript{3}, Yb(NO\textsubscript{3})\textsubscript{3}, Lu(NO\textsubscript{3})\textsubscript{3}, and Ga(NO\textsubscript{3})\textsubscript{3} ultrahigh purity reagents were dissolved in 25 mL of an 1 M aqueous solution of HNO\textsubscript{3}. Citric acid (2 times the metal ion concentration) was added and the mixture was heated to 90 \degree C under stirring. A total of 4.0 g of polyethylene glycol (PEG) was added and the mixture was maintained at 90 \degree C for 30 min under stirring. The solution was kept in an oven at the same temperature for 24 h. During this time the solvent slowly evaporates leading to a gel formation, which was then calcined at 900 \degree C for 16 h in a furnace. A similar procedure was used for the synthesis of Tm3+/
Yb3+/Er3+-doped Lu\textsubscript{3}GaO\textsubscript{12} and Gd\textsubscript{3}GaO\textsubscript{12} control samples as well as the Lu\textsubscript{2.64}Y\textsubscript{0.06}Yb\textsubscript{0.3}Ga\textsubscript{5}O\textsubscript{12} reference sample. For the preparation of microcrystalline Lu\textsubscript{2.64}Er\textsubscript{0.03}Tm\textsubscript{0.03}Yb\textsubscript{0.3}Ga\textsubscript{5}O\textsubscript{12}, the coprecipitation method was used. Aqueous NH\textsubscript{4}OH (28–30\%) was added dropwise to the aqueous mixture containing the corresponding lanthanide nitrates. The resulting white precipitate was dried under vacuum for 24 h before it was heated to 1000 \degree C for 16 h.

Techniques. The XRD patterns of the samples under study were measured with a Thermo ARL XTRA powder diffractometer (Cu K\textalpha radiation, \lambda = 1.5418 Å, Bragg–Brentano geometry, Peltier Si(Li) cooled solid state detector). The TEM measurement was performed with a JEOL JEM-2000 FX microscope operating at 80 kV equipped with a CCD camera (Gaten). Roughly, 1 mg of the sample was dispersed in 5 mL of ethanol and sonicated for 2 h. One drop of the resulting suspension was evaporated on a carbon film supported on a 300 mesh copper grid. EDX measurements were performed with the ECON EDS unit attached to the Philips CM200 TEM instrument. The sample preparation for the EDX is similar to that of the TEM. For the luminescence measurements, the nanocrystalline sample was packed in a 1 mm diameter capillary tube and excited using a Coherent fiber-coupled F6 series 980 nm laser diode (maximum power of 800 mW), coupled to a 100 \mu m (core) fiber. The upconverted visible emissions were collected at right angle with respect to the incident beam and then dispersed by a 1 m Jarrell-Ash Czerny-Turner double monochromator with an optical resolution of \sim 0.15 nm. The visible emissions were detected by a thermoelectrically cooled Hamamatsu R943–02 photomultiplier tube. A preamplifier model SR440 Standard Research Systems, processed the photomultiplier signals and a gated photon counter model SR400 Standard Research Systems data acquisition system was used as an interface between the computer and the spectroscopic hardware. The signal was recorded under computer control using the Standard Research Systems SR465 software data acquisition/ analyzer system.

3. Results and Discussion

Figures 1 and 2 show the X-ray diffraction (XRD) pattern and TEM image, respectively, of the Tm3+/Yb3+/Er3+-doped Lu\textsubscript{3}GaO\textsubscript{12} nanocrystalline material prepared via the Pechini sol–gel method. The XRD pattern of the obtained powders confirms the formation of well-crystallized single-phase of lutetium gallium garnet (space group Ia\textoverrightarrow{3d}) and the calculated pattern matches well with the experimental one. A lattice parameter of 12.19693 Å was obtained, which is close to that reported for the lutetium gallium garnet single crystal (12.188 Å).20 The calculated crystallite size from the XRD data is 73 ± 1 nm which is slightly larger than the average size of ca. 50 nm measured from the TEM analysis. EDX analysis was performed in order to obtain the concentration of lanthanide
ions present in the sample (Figure S1). The result yielded a Ga/Lu ratio of 1.48 for the Lu$_3$Ga$_5$O$_{12}$ garnet and is in good agreement with the expected ratio of 1.67. The calculated ratio of lanthanide ions was determined to be 0.8:8.5:0.8 for Tm$^{3+}$:Yb$^{3+}$:Er$^{3+}$, which is slightly lower than the theoretical 1:10:1 ratio. We believe this loss is due to the evaporation of the metal ions during the heat treatment. To confirm the results, measurements were done on three different samples of the same concentration. All three samples exhibited similar results suggesting that the loss due to evaporation is reproducible.

Figure 3 shows the upconverted emission spectrum in the range 450–900 nm obtained using an excitation wavelength of 980 nm with a laser power of 500 mW (55.5 W/cm2). The blue sharp emissions and NIR emission peaks centered at 475 and 980 nm are attributed to the transitions 3Ga$^+$$
ightarrow$3H$_6$ and 3H$_4$$
ightarrow$3H$_6$ transitions, respectively, of the Tm$^{3+}$ ion. The emission peaks observed around 550 nm are assigned to the (3H$_{11/2}$, 3S$_{3/2}$)$
ightarrow$4I$_{15/2}$ transitions of the Er$^{3+}$ ions, while the observed red emission peaks centered at 670 nm are attributed to the Er$^{3+}$ 4F$_{9/2}$$
ightarrow$4I$_{15/2}$ transition. Although a very weak contribution to the red 670 nm emission peak due to the 5G$_4$$
ightarrow$3F$_4$ transition of Tm$^{3+}$ is likely, it is over shadowed by the strong red emission from Er$^{3+}$ (7F$_{5/2}$$
ightarrow$4I$_{15/2}$) transition (see Figure 3). The inset in Figure 3 displays a digital photograph of the upconverted white light from the Tm$^{3+}$/Yb$^{3+}$/Er$^{3+}$-doped Lu$_3$Ga$_5$O$_{12}$ garnet nanocrystals as well as the individual red, green and blue emissions from the same sample obtained by placing appropriate color filters. The sample shows a strong white light emission and is clearly visible to the naked eye at a pump power as low as 30 mW (3.4 W/cm2) demonstrating the high efficiency of the upconversion process.

To show that cooperative upconversion from Yb$^{3+}$ pairs (i.e., two Yb$^{3+}$ ions are excited to the 2F$_{5/2}$ state and interact with each other to reach a virtual state at 490 nm) did not lead to the blue emission near 475 nm, Y$^{3+}$/Yb$^{3+}$ codoped lutetium gallium garnet of composition Lu$_{2.64}$Y$_{0.06}$Yb$_{0.3}$Ga$_5$O$_{12}$ was prepared as reference sample, since trivalent yttrium is optically silent. The upconverted emission spectrum of the reference sample showed no characteristic cooperative blue emission upon excitation with 980 nm laser (the very weak features are due to the presence of lanthanide impurities present in the lutetium, yttrium and ytterbium nitrates) and thereby confirming that the observed strong blue emission at 475 nm in the Tm$^{3+}$/Yb$^{3+}$/Er$^{3+}$-doped Lu$_3$Ga$_5$O$_{12}$ sample originates from the Tm$^{3+}$ ions (see Figures S2 and S3). The calculated color coordinates for the Tm$^{3+}$/Yb$^{3+}$/Er$^{3+}$-doped Lu$_3$Ga$_5$O$_{12}$ garnets (0.27, 0.33) fall well within the white region of the CIE diagram (Figure 4). Even more interesting is the fact that the color coordinates changed only slightly when the incident laser densities were varied between 50 and 70 W/cm2 and is indicated in Figure 4.

To verify that the ratios of the optically active Ln$^{3+}$ ions (i.e., 1:10:1, Tm$^{3+}$:Yb$^{3+}$:Er$^{3+}$) used to produce white light in the Lu$_3$Ga$_5$O$_{12}$ nanocrystals was optimized, we performed several control experiments (see Figures S4–S7). We synthesized Lu$_3$Ga$_5$O$_{12}$:Tm, Yb, Er nanocrystals with an identical ratio but with different concentrations (1.5:15:1.5, Tm$^{3+}$:Yb$^{3+}$:Er$^{3+}$). The sample exhibited strong white light emission and is confirmed by the CIE coordinates, which fall within the white region (0.28, 0.30). This clearly indicates that keeping the ratio constant, albeit with different overall dopant concentrations, does not change the optical properties of the material. Furthermore, a microcrystalline Tm$^{3+}$/Yb$^{3+}$/Er$^{3+}$ (1:10:1) doped Lu$_3$Ga$_5$O$_{12}$ sample was synthesized via the coprecipitation method. Aside from the overall increase in intensity, which is typical in bulk materials, upconverted white light was also obtained with similar CIE coordinates (0.26, 0.32). Moreover, a Tm$^{3+}$/Yb$^{3+}$/Er$^{3+}$ (1:10:1) doped Gd$_3$Ga$_5$O$_{12}$ nanocrystalline sample, synthesized using the Pechini method, did not produce upconverted white light. The calculated CIE color coordinates (0.25, 0.36) did fall close to the edge of the white region; however, to bring them into the white region (0.26, 0.32), the Yb$^{3+}$ ion (sensitizer) concentration was increased from 0.037 to 0.046 mmol. These control experiments indicated that ratios of dopant ion concentration were optimized and, could be extended to other garnet hosts without too much difficulty. To get an idea on the relative intensity of the emission between the Ln$^{3+}$-doped Gd$_3$Ga$_5$O$_{12}$
and Lu\textsubscript{2}Ga\textsubscript{5}O\textsubscript{12} white light samples, we excited the samples with a 980 nm pen-diode laser (<20 mW). The light output from the Lu\textsubscript{2}Ga\textsubscript{5}O\textsubscript{12} sample was visible to the naked eyes whereas hardly any light was observed from the Gd\textsubscript{2}Ga\textsubscript{5}O\textsubscript{12} sample.

To further understand the effect of the concentration of the dopant ions on the optical properties of the material, we prepared Tm3+/Yb3+/Er3+-doped Lu\textsubscript{2}Ga\textsubscript{5}O\textsubscript{12} samples with different ratios of Tm3+, Yb3+, and Er3+ ions (1:10:0.5, 0.5:10:1, 0.8:10:1, 1:10:0.8, 1:12:1, and 1:15:1) The resulting CIE color coordinates calculated from the corresponding upconverted emission spectrum are shown in Figure S8 (for clarity results from only four samples are shown). It is clear from the results that changing the ratio of the three lanthanide ions (Tm3+, Yb3+, and Er3+) in sol–gel derived Lu\textsubscript{2}Ga\textsubscript{5}O\textsubscript{12} nanocrystals, the CIE coordinates, except for the ratio (0.5:10:1) fall within the white region. These experiments prove that even for a slight change in the ratios of the lanthanide ions in Tm3+/Yb3+/Er3+-doped Lu\textsubscript{2}Ga\textsubscript{5}O\textsubscript{12}, white light could still be achieved.

To better understand the mechanisms by which the \(^1\text{G}_4 \) (Tm3+), \(^2\text{H}_{11/2}, ^4\text{S}_{3/2}, \) and \(^4\text{F}_{9/2} \) (Er3+) states are populated, the upconverted luminescence intensity \(I \) of the blue (\(^4\text{G}_4 \rightarrow ^4\text{H}_6 \)), the green (\(^4\text{H}_{11/2}, ^4\text{S}_{3/2} \rightarrow ^4\text{I}_{15/2} \)), and the red (\(^4\text{F}_{9/2} \rightarrow ^4\text{I}_{15/2} \)) transitions were measured as a function of the pump power \(P \). The slope of the curve \(\ln(I) \) versus \(\ln(P) \) was determined to be 2.16, 1.92, and 1.65 for the blue, green, and red emissions, respectively, allowing us to therefore propose that two photons (2.16) could be explained by saturation of the upconversion process between Tm3+ ions and high concentration of Yb3+ ions present resulting in the Er3+ ions being well-separated from each other (the same is also true for Tm–Tm interactions). The results shown in Figure 5 differ from those reported by Chen et al. for Er3+ and Tm3+-doped Y\textsubscript{2}O\textsubscript{3} nanocrystals.13 The authors reported an additional cross-relaxation process between Tm3+ (\(^4\text{H}_4 \rightarrow ^4\text{H}_6 \)) and Er3+ (\(^4\text{I}_{13/2} \rightarrow ^4\text{S}_{3/2} \)) responsible for the population of the \(^4\text{S}_{3/2} \) and \(^2\text{H}_{11/2} \) states of Er3+. However, it is clear from the strong emission peak observed at 802 nm (\(^2\text{H}_4 \rightarrow ^2\text{H}_6 \)) that in the Tm3+/Yb3+/Er3+-doped Lu\textsubscript{2}Ga\textsubscript{5}O\textsubscript{12} nanocrystals made via the sol–gel method, the only possible mechanism for populating the Er3+ emitting states (\(^2\text{H}_{11/2}, ^4\text{S}_{3/2} \rightarrow ^4\text{I}_{15/2} \)) is via energy transfer from the excited Yb3+ sensitizer. This is a clear indication that the activator ions, Tm3+ and Er3+, are spatially well separated and no significant energy transfer occurs between these two ions. Thus, the energy transfer occurs mainly from the Yb3+ sensitizer. The average Er–Tm ion distance \(d \) in the present material can be estimated using the equation24

\[
d = \left(\frac{3}{4\pi N} \right)^{1/3}
\]

where \(N \) is the total Er3+ and Tm3+ ion density. From crystallographic data,25 the average Er–Tm distance was determined to be 9.7 Å. It is therefore plausible that the energy transfer processes between the Er3+ and Tm3+ ions are not very efficient as the average Er–Tm distance is at the upper limit of the range of the reported critical distances for an efficient energy transfer between lanthanide ions (below 9–10 Å).26–28

We postulated that the Er3+ and Tm3+ ions are well separated (9.7 Å) resulting in inefficient cross-relaxation between the two ions. As a result, this causes the color coordinates in the CIE diagram to change only slightly with the pump power. The small change in the CIE coordinates with the incident pump power suggests that the material would be ideal for getting controllable color temperature. The color temperature of a light source is the temperature (in K) at which the heated blackbody matches the color of the light source and is a unique feature to solid state lighting devices in the development of white light-based LEDs.

4. Conclusions

To conclude, we have demonstrated for the first time, the generation of strong white upconversion emission from Tm3+/Yb3+/Er3+-doped lutetium garnet nanocrystals. The white light was observed by the naked eye at laser powers as low as 30 mW (3.4 W/cm2). The calculated CIE color coordinates fall well within the white region and excitingly change only very little with the incident pump power. These two significant characteristics in combination with the thermal stability of the lutetium garnets make this material an ideal candidate for the development of white light based lasers and LEDs. Moreover, several control samples indicated that the ratio utilized for the optically active dopant ions were optimized and could be extended to other garnets without much variation. In addition, even for a slight change in the ratios of the dopant ions, white light was still achieved. Finally, the sol–gel method employed in the preparation of the material is amenable for the growth of large-area devices by simple dip or spin coating of the precursor materials.

Acknowledgment. Financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged. F.V. is grateful to NSERC for postdoctoral fellowship support. V.V. acknowledges the MOU agreement between University of Verona, Italy and Sri Venkateswara University, India.

Supporting Information Available: EDX spectrum of Lu\textsubscript{2.64}Er\textsubscript{0.03}Tm\textsubscript{0.03}Yb\textsubscript{0.3}Ga\textsubscript{5}O\textsubscript{12}, TEM images of Lu\textsubscript{2.64}Y\textsubscript{0.06}Yb\textsubscript{0.3}Ga\textsubscript{5}O\textsubscript{12} and microcrystalline Lu\textsubscript{2.64}Er\textsubscript{0.03}Tm\textsubscript{0.03}Yb\textsubscript{0.3}Ga\textsubscript{5}O\textsubscript{12}, XRD results of Lu\textsubscript{2.64}Y\textsubscript{0.06}Yb\textsubscript{0.3}Ga\textsubscript{5}O\textsubscript{12}, and up-
converted emission spectra of microcrystalline $\text{Lu}_{2.64}\text{Er}_{0.03}\text{Tm}_{0.03}\text{Yb}_{0.3}\text{Ga}_5\text{O}_{12}$, $\text{Lu}_{2.64}\text{Y}_{0.06}\text{Yb}_{0.3}\text{Ga}_5\text{O}_{12}$, and $\text{Gd}_{2.58}\text{Er}_{0.03}\text{Tm}_{0.03}\text{Yb}_{0.36}\text{Ga}_5\text{O}_{12}$. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

