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The rapid lifetime determination method (RLD) is a
mathematical technique for extremely rapid evaluations
of lifetimes in exponential decays. It has been applied in
luminescence microscopy and single-molecule lifetime
evaluation. To date, the primary application has been in
single-exponential evaluations. We present extensions of
the method to double exponentials. Using Monte Carlo
simulations, we assess the performance of both the
double-exponential decay with known lifetimes and the
double-exponential decay with unknown preexponential
factors and lifetimes. Precision is evaluated as a function
of the noise level (Poisson statistics), the ratios of the
lifetimes, the ratios of their preexponential factors, and
the fitting window. Optimum measurement conditions are
determined. RLD is shown to work well over a wide range
of practical experimental conditions. If the lifetimes are
known, the preexponential factors can be determined with
good precision even at low total counts (10%4). With
unknown preexponential factors and lifetimes, precisions
decrease but are still acceptable. A new gating scheme
(overlapped gating) is shown to offer improved precision
for the case of a single-exponential decay. Theoretical
predictions are tested against actual experimental data
from a laser-based lifetime instrument.

The rapid lifetime determination (RLD) method is a family of
data analysis equations for fitting experimental data that conforms
to single- and multiple-exponential decays with or without a
baseline contribution.!~3 Rather than recording a complete mul-
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tipoint decay curve and analyzing the decay by the traditional least-
squares methods, the areas under different regions of the decay
are used to calculate the decay parameters. The areas over
different time intervals of width At are obtained by accumulating
photon intensity (e.g., gated integrator or gated CCD camera).
CCD cameras are particularly suited to the RLD method since
they automatically integrate the data over different time intervals.
Further, they do not lend themselves readily to recording of
multipoint decay curves. Alternatively, the integrals can be
computed directly from a multipoint-digitized decay by summing
the digitized signal over each interval in software. RLD is much
faster than traditional approaches for recording and analyzing
decays and does not have problems such as false minimums.

Optimum conditions were determined previously for the RLD
method of single-component decays and for single-component
decays plus a nonzero baseline using Monte Carlo simulations.?
However, the important case of the double-exponential decay has
not been addressed. In addition, we wished to develop more
precise methods for the single-exponential case.

To determine for the RLD method the optimum acquisition
conditions with differing system parameters, a range of values
for each variable must be considered. This is experimentally
difficult because of the absence of reliable standard mixtures with
different lifetimes and contributions. In addition, such studies
would be extremely time-consuming and tedious. To avoid the
experimental difficulties, we used theoretical (Monte Carlo)
simulations to test a broad range of experimental conditions with
different RLD methods.

In the current work, we have developed new integration
(gating) schemes and applied them to single- and double-
exponential problems. For the double-exponential systems, we
examined both the case where the two lifetimes (z3, 7,) are known,
but the preexponential factors (k;, k;) are unknown, and the
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general unconstrained case where the preexponential factors (k;,
k;) and lifetimes (71, 72) are unknown. The first case is a common
problem where the analyte lifetimes are known and one is
determining the relative amounts of the two components, while
the second situation occurs where one knows nothing about the
components.

EXPERIMENTAL SECTION
Methodology for Single- and Double-Exponential Simula-

tions. Monte Carlo simulations were used to judge the precision
and accuracy of the data reduction methods. The parameter values
selected to generate data corresponded to expected experimental
values. For each set of selected decay parameters, a noise-free
data set was generated from the model equation. Noise obeying
Poisson statistics was added to the decays, which were then
reduced by the appropriate algorithm. This process was repeated
a number of times with different noise sets to determine the
statistics for the fitting algorithm. The parameters from the
reduction were compared with initial parameters used to generate
the noise-free data. The calculations were then repeated with
different sets of parameters for the modeling equation. Thus, the
theoretical calculations allowed testing of the extremes over which
the RLD will provide reliable results and direct the design of
experiments to achieve a desired accuracy.

Poisson noise was selected since it corresponds to noise that
is frequently experimentally encountered (e.g., time-correlated
single-photon-counting instrument).* Even analog instruments
based on photon detectors can have noise distributions that follow
amplitude dependencies similar to Poisson statistics. In all cases,
we base our calculation on the total number of photons that would
be detected during the entire sample decay from zero time to
infinity.

We choose not to use error propagation for two reasons. First,
it becomes exceptionally complex and cumbersome for the double-
exponential case. Second, it is based on infinitesimal errors, which
can distort results for the larger errors present in our simulations.
Thus, while the plots are noisier, they are more reliable.

All Monte Carlo simulations were performed using Mathcad
7.0 (Waterloo Scientific, Toronto, Canada, 1997). Typically, 100
simulations were performed at each set of conditions to determine
the uncertainty in the parameters. The built-in random number
generator gives no repeats over >107 trials, which far exceeds
the number involved in our calculations, and it gives a good
Gaussian distribution for hundreds of trials. After scaling each
decay to give a total area equal to the specified number of photons,
noise was added using a Poisson noise generator. Results are
displayed as contour plots of fractional percent standard deviation
100 o,/X, where oy is the standard deviation and X is the mean of
the parameters determined from all simulations.

Equations were derived by analytically evaluating the areas
under the different portions of the decay curves. The decay
parameters were determined by solving the system of equations.
For the overlapping cases, we were only able to get closed form
solutions for specific overlaps (0%, 25%, 50%, 75%). However, a
solution for any arbitrary overlap eluded us.

Single-Exponential Decays. Noise-free single-exponential
decays were generated from
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I(t) = k exp(—t/7) (D)

where K is the preexponential factor, 7 is the sample lifetime, and
tis time. In the RLD methods, one determines the areas under
different regions of the decay and, from appropriate equations
(vide infra), calculates k and 7. For the single-exponential decay,
only two areas are calculated since there are only two unknowns.
The integrated areas D, and D; are shown in Figure 1a for equal
gating and in Figure 1b for the 50% overlapped gating. Obviously
there is a continuum of possible displacements. The total counts
would equal kz.

For real data, the data analysis for the RLD method consists
of substituting the integrals D, in the equations below. The Dy's
are obtained by summing the data that has been acquired at equal
time intervals 6t. For example,

i=n/2
D,=§ I;0t )

where I is the data point acquired at the ith time (i t) and n is
the total number of points acquired. In the case of photon
counting, the integrals are simply the total counts recorded in
the interval At. The equations for r and k are given below with
At, the time interval of integration. For the contiguous gating,
egs 3 and 4 are the same as used earlier.2 Equations 5 and 6 are
for the 50% overlapped gating case.

contiguous gating

7= At/In(D,/D,) 3)
k = Dy’ In(Dy/D,)/[(D, — D,)At] %)

overlapped gating
7= —At/In(D,’/D,?) (5)
k = 2D,? In(D,/Dy)/[(D,> — D,A)At] (6)

As a check of our Mathcad program, the same experimental
parameters were chosen as in the earlier work.2 Calculations
agreed with the earlier results.

Double-Exponential Decay. Double-exponential decays were
computed from

I1(t) = k, exp(—1/7;) + k, exp(—1/7,) @)

71 Will be taken as the shorter lifetime.

There are two different practical applications of the double-
exponential decay case: the double-exponential decay (1) with
known lifetimes and (2) with no known lifetimes. In both cases,
the total number of counts would be equivalent to k;z; + k7.

Double-Exponential with Known Lifetimes. For the double-
exponential case with known lifetimes, there are two required
areas since there are only two unknowns, k; and k,. The k's are
given below by egs 10 and 11 for contiguous integration integrals
and by eqgs 12 and 13 for the 50% overlapping integration regions.
The integration regions are shown in Figure 1. E; and E; are
constants.
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Figure 1. Graph of integrated areas used for the single-exponential
decay with contiguous gates (a) and overlapping gates (b).

E, = exp(—At/7,) 8)
E, = exp(—At/t,) (©)
contiguous gating
k, = (D, — E,Dp)7,/(—E, + E,E, + E; — E}) (10)
k, = (D, + DyE;)7,/((E; — E,)(—1 + Ey) (11)
overlapped gating
ke = [(Doy/Ey — DB/ (—/E1 + VE(-1 + E)]  (12)
k, = [-(~D, + JE,Dy)r1)/
(WVE — (E)¥* — VE, + VEED] (13)

The fractional contributions of the preexponential factors are
generally the quantities of interest rather than the absolute values
of the k's. The fractional contributions, f; and f, are defined:

fi = k/(k, + k) (14)
f, = k/(k; + k) (15)

To visualize the interactions of the numerous parameters, we fixed
the total counts as well as ki/k, and then varied At/7, and 7./1;
to generate an error contour map. For example, 7,/7; ranged from
1.1 to 5 and At/7; ranged from 0.2 to 5. This procedure was
repeated using several different values for the ratio of preexpo-
nential factors and total photons detected. This allowed us to
determine best values of At/t; for different 7,/

Double-Exponential Decay with Unknown k1, ko, 71, and
7,. Four areas under the curve are required for the unconstrained
double-exponential decay since there are four unknowns as seen
in Figure 2. The equations are shown below. Equations 22—25
are for the contiguous case and eqs 26—29 are for the 50%
overlapping case. O, P, Q, x, y, and DISC are intermediate
calculations.

R =D,D, — D,D, (16)
P =D,D, + D,D, 17
Q=D,D, — D,D, (18)
DISC = PP — 4RQ (19)

x = (=P — v/DISC)/(2R) (20)

y = (—P + v/DISC)/(2R) (1)
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Figure 2. Graph of integrated areas used for the unconstrained
double-exponential decay with contiguous gates (a) and overlapping
gates (b).

contiguous gating
7, = —At/In(y) (22)

7, = —At/In(x) (23)
k, = (xD, — D,)* In(y)/
[(xD, — XD, + D, — D,)(DyX* — 2xD; + D,)At] (24)
k, = —R(In(yD, — D,) — In(Dyy — Dy))/
[(—1 4+ x)(DyX* — 2xD, + D,)At] (25)

overlapped gating
7, = —At/In(y?) (26)
7, = —A/In(x?) 27
k, = —2(xD, — D,)* In(y)/[(xD; — D, + Dyx — D) x
(—Dyx + D, + Dgx — D,)(Dy® — 2xD; + D,)At] (28)

k, = —2R In(x)/[(Dy<* — 2xD; + D,)(X* — 1)At] (29)

The percent relative standard deviations for all four parameters
were calculated as a function of 7o/11, At/ty, ki/ky, and the total
photons detected. Again, not all four variables could be varied at
once, but by assigning two variables a given number and then
varying two other variables over a range of experimentally realistic
values, the optimum conditions for measuring different parameters
could be determined. The same range of parameters was used
for this case as was used in the double-exponential decay with
known parameters.

Lifetime data were collected for Ru(bpy)s?* (bpy = 2,2'-
bipyridine) using a laser-based instrument to compare the simula-
tions with real data. To test several different lifetimes, the lifetime
of Ru(bpy)s?* was varied by bubbling it in nitrogen, air, and
oxygen, which gave lifetimes of 552, 382, and 164 ns, respectively.
For each case, four or more different decays were collected as
close together in time as possible to ensure the most uniform
data set. The measured lifetimes were calculated by a nonlinear
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Figure 3. Percent relative standard deviation of 7 for the single-
exponential decay with contiguous gates (a) and overlapping gates
(b) using Monte Carlo Simulations.
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Figure 4. Ru(bpy)s2* decay results for single-exponential decay
comparing contiguous gates to overlapped gates using the RLD
method (nitrogen results).

least-squares method, and the largest relative standard deviation
was 0.64%. The averages of all measurements were taken as the
actual lifetimes for comparison with the RLD results.

RESULTS AND DISCUSSION
Single-Exponential Decay. Figure 3 is a result of the Monte

Carlo simulations for the overlapping (50%) and contiguous gated
cases. For At/7 less than 2, the contiguous RLD is better than
the overlapping case. At high values of At/z (>3), the overlapping
RLD is superior and shows continual improvement with increasing
At/t even at At/t = 5. In the optimum region (At/t = 2-3), both
methods are comparable; however, in the optimum region, the
overlapping RLD can actually use less of the decay curve than
the contiguous RLD method. This minimizes the need for data
on the less reliable tail of the decay.

Figure 4 shows the results of reducing single-exponential
Ru(bpys)?" decays for both the overlapping and contiguous cases.
For very small At/7, the contiguous gates give smaller relative
standard deviation, but the 50% overlapping case has good
precision over a much wider range of At/z. These experimental
results are consistent with the Monte Carlo simulations (Figure
3). Thus, the overlapping case should be used if little is known
about the system. The RLD precision for 7 (0.6%—1.2%) is
comparable to, or only slightly less than, that for nonlinear least-
squares fitting (0.6%).

Double-Exponential Decay with Known Lifetimes. Using
the Monte Carlo simulations, the percent relative standard
deviations for f; and f, were calculated as functions of 7./7;, At/
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Figure 5. Percent relative standard deviation of f; for the double-
exponential decay with known lifetimes: (a) contiguous, (b) 25%
overlapping, (c) 50% overlapping, and (d) 75% overlapping (ki/k, =
5; counts, 10°).

71, ki/ky, and the total photons detected. We first consider the
question of the optimum gating scheme. Graphs a—d in Figure 5
represent the percent relative standard deviation of f; with gate
overlaps varying from 0% to 75%. For each graph, ki/k, equals 5,
kit + ko, equals 108, At/r; ranged from 0.25 to 5, and 7,/7;
ranged from 1.5 to 5. The contiguous gating and 25% overlap cases
are indistinguishable, but for the 50% and 75% overlap cases,
precision clearly decreases. This is also true for other values of
ki/k,. However, even at low total counts (10%), the percent relative
standard deviation in the optimum regions is less than 5% for
contiguous gating and less than 7% for 50% overlap gating. The
shapes of the error curves are similar for the different total counts,
but the precision decreases as the total counts decrease. For
example, at 106 counts the optimum region has a relative standard
deviation of 0.55% for ki/k, = 1 and at 10* the optimum region for
the same kj/k;, is 5.5%. The optimum region for f, is equivalent to
the optimum region of f;.

It is of interest to determine how the precision varies as a
function of the total number of counts and k;/k,. For a given k;/
ko, we find that standard deviation in both f; and f, is inversely
proportional to the square root of the total counts. Figure 6 is a
plot of percent relative standard deviation for total counts ranging
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Figure 6. Percent relative standard deviation of the fractional
contribution of k; for double-exponential decay for differing values of
kilkz; and total counts.

from 10 to 10° and ky/k, with values of 5, 1, or 0.2. At the higher
counts, the precision is excellent. For example, with k;/k, = 5,
the percent relative standard deviation in f; is 0.1% at 108 counts
and 1.1% at the low 10 total counts. The inverse square root
dependence is reasonable since it corresponds to the relative noise
level in the data. This observation allows one to estimate the noise
level for varying total counts and ki/k's. f, obeys a similar count
dependence.

The relative precision in f; and f, depends on their contribu-
tions. The larger the fractional contribution the better the
precision. For example, the precision in f; is roughly linearly
dependent on 1/(ky/k) at all total counts tested while the precision
in f, is linearly dependent on ki/k;.

Double-Exponential Decay with No Known Parameters.
Graphs a—h in Figure 7 represent the percent relative standard
deviation from a representative set of Monte Carlo simulations.
Because the number of parameters is greater, results for the fitted
parameters of the unconstrained double-exponential decay were
less precise than for the double decay with known lifetimes.
However, the precision of the RLD method is quite acceptable
for a variety of measurements at reasonable photon levels. The
precision of each parameter is shown for both contiguous and
50% overlapped gating with ki/k, = 5 and 109 total photons.
Comparing the best regions for each parameter, the overlapping
RLD has comparable or superior performance to the contiguous
RLD method. In addition, the regions of comparable error tend
to be larger for the overlapping method than for the contiguous
RLD. Thus, the overlapping RLD places less stringent conditions
on the measurement conditions. If there is interest in a specific
parameter, these curves can be used to select the optimum region
for measuring that parameter.

Frequently all four parameters are of interest. To judge the
optimum conditions for simultaneously measuring all parameters,
we calculated an error surface for the average error for all
parameters. This was done by pointwise averaging all of the data
of the four parameters in Figure 7 with each of the two methods.

Contiguous
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Figure 7. Percent relative standard deviation for the unconstrained
double-exponential decay of (a, b) 71, (c, d) 72, (e, f) f1, and (g, h) £.
The left column represents simulations for the contiguous case and
the right column the overlapping case.
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Figure 8. Percent relative standard deviation for unconstrained
double-exponential decay for all parameters, comparing the contigu-
ous gates (left column) with the overlapping gates (right column) for
differing values of ki/k, (counts, 106).

The result is shown in Figure 8 for several values of ki/k,. While
in the optimum regions, both contiguous and overlapping RLD
yield comparable precisions, the 50% overlapped gating has a much

Analytical Chemistry, Vol. 71, No. 5, March 1, 1999 951



Kt)

0 50 100 150 200
time
140
]
< -6
=
=
w -
& -260 .
F | e NLLS_residuals
-460 — RLD _residuals
0 e
0 50 100 150 200

time
Figure 9. Plots for nonlinear least-squares method and uncon-
strained RLD for a synthetic double-exponential decay. Details in text.

larger high precision valley. Therefore, the overlap RLD will be
much more forgiving about the selection of acquisition parameters.

As one would expect, precision suffers badly as the two
lifetimes approach each other. To obtain reasonable overall
precisions, 7,/7; should be at least 2 and 3—4 would be best. For
larger 7,/71's, little additional precision is gained. For At/7; > 2,
the precision reaches a minimum and is best for ky/k, > 1.

Of course, least-squares methods will always give better fits
to complete decay curves than those generated by RLD using a
few integration regions. We demonstrated this by fitting a 512-
point synthetic double-exponential decay curve with nonlinear least
squares and by the unconstrained double-exponential RLD. The
total counts for the decay were 108, k, = k; = 6000, and 7,/7; =
3 with 7, = 42.5. Poisson noise was added to the decay before
fitting. We used t = 0—511. The k's and 7's were 6160, 5833, 43.8,
and 129 by least squares and 6332, 6218, 38.2, and 127 by RLD.
Plots of the best fits calculated by both methods are essentially
indistinguishable except at the earliest times (Figure 9). When
the computational times were compared, it was found that the
RLD was submillisecond and the nonlinear least squares required
several seconds with PSIPlot. The differences can be better
revealed by the residuals plots, which are also shown in Figure
9. As expected, least squares gives a better fit, but the RLD fit is
comparable while being based on vastly fewer points and simpler
calculations.
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CONCLUSIONS

We have evaluated the precision of the RLD method for single-
exponential decays utilizing a new windowing (overlapping gates)
scheme and double-exponential decays with both known lifetimes
and unknown preexponentials and lifetimes as a function of
different measurement conditions and decay parameters (e.g., total
counts, ki/k,, At/7, 1,/71, gating schemes).

For a single-exponential decay, the new overlapping windowing
scheme gives precision that is comparable to the earlier contigu-
ous windowing. However, overlapping gating is more forgiving
of different measurement conditions, which is a major advantage
when an unknown system is measured (e.g., chromatography).

For the double-exponential decay with known lifetimes, the
precision of the fractional contributions is excellent at higher total
counts and usable even at counts as low as 10% For the simulations
and Poisson statistics, contiguous gating gave better results than
overlapping gates. Precision can easily be estimated since it
depends simply on the total number of counts and ky/k;.

For the double-exponential decay with unknown kj, ks, 7,, and
71, the 50% overlapping gate is superior. In the optimum regions,
precision is comparable between the overlap and contiguous
gating. However, the optimum areas are larger for overlapping
gating, either for any individual parameter or for all parameters
taken as a whole.

Our results show that the new gating scheme for single-
exponential and double-exponential decays provides a simple and
extremely rapid method of lifetime evaluation. While not as precise
as the least-squares method, precision is still very good, and not
all instrumentation lends itself to recording the complete multi-
point decay curves required of least-squares methods (e.g., CCD
cameras). Another disadvantage of RLD is that it gives no warning
of more complex decays.? It should be applied to systems that
have already been fully characterized as to their kinetics. We are
currently experimentally applying the method to double expo-
nential systems.

The ultimate goal of this research is to use the RLD method
to assess the contributions of the lifetime and the preexponential
factors of double-exponential decays in biological systems and
polymer-supported sensors using luminescence microscopy. Life-
time measurements would allow the quantitative determination
of intracellular factors such as [H*], [Ca%], [O,], membrane
potential, temperature, polarity of the probe environment, and
alterations in the conformation and interactions of macro-
molecules.>7
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